Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1682: 463518, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36155073

RESUMO

Affinity liquid chromatography using FcRn and FcγRIIIa columns can provide important information on the drug effector functions and the unique PK/PD properties of therapeutic mAbs. In this study, we propose a unique strategy to improve the performance of affinity chromatography by applying pH-gradient programs that incorporate multi-isocratic and negative gradient segments. These alternative gradient programs are known to greatly improve the separation of large solutes that follow a "bind-and-elute" type retention behavior. First, judicious optimization of the mobile phase compositions was performed to obtain a linear pH response. Then, with the developed strategy using multi-isocratic analysis conditions, the FcRn affinity separation selectivity for the analysis of oxidized mAb species was greatly improved. Furthermore, the introduction of negative gradient segments after each eluted peak improved the resolution between multiple glycosylated mAb species on the FcγRIIIa column. Therefore, this work provides a new strategy to improve the performance of affinity chromatography with mAb species, and could assist in the development of more accurate binding assays for important critical quality attributes related to FcRn and FcγRIIIa binding.


Assuntos
Produtos Biológicos , Anticorpos Monoclonais/metabolismo , Cromatografia de Afinidade , Cromatografia Líquida , Glicosilação
2.
Talanta ; 236: 122836, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635226

RESUMO

Bispecific antibodies (bsAbs) are considered as an important class of biopharmaceutical drugs, with about 160 products in clinical trials. From an analytical point of view, the correct chain-association is one of the most critical challenge to monitor during bsAbs development and production. In the present study, a full analytical workflow has been developed based on the use of various chromatographic modes: size exclusion chromatography (SEC), ion exchange chromatography (IEX), reversed phase liquid chromatography (RPLC), and hydrophilic interaction chromatography (HILIC), all combined with high resolution mass spectrometry (MS). This analytical strategy was applied to Hemlibra® (emicizumab), which is certainly the most successful commercial bsAb to date. Using this strategy, it was possible to monitor the presence of mispaired bsAb species and detect and identify additional post-translational modifications (PTMs).


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais , Cromatografia em Gel , Cromatografia de Fase Reversa , Espectrometria de Massas
3.
Pharmaceutics ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834160

RESUMO

The identification and accurate quantitation of the various glycoforms contained in therapeutic monoclonal antibodies (mAbs) is one of the main analytical needs in the biopharmaceutical industry, and glycosylation represents a crucial critical quality attribute (CQA) that needs to be addressed. Currently, the reference method for performing such identification/quantitation consists of the release of the N-glycan moieties from the mAb, their labelling with a specific dye (e.g., 2-AB or RFMS) and their analysis by HILIC-FLD or HILIC-MS. In this contribution, the potential of a new cost- and time-effective analytical approach performed at the protein subunit level (middle-up) was investigated for quantitative purposes and compared with the reference methods. The robustness of the approach was first demonstrated by performing the relative quantification of the glycoforms related to a well characterized mAb, namely adalimumab. Then, the workflow was applied to various glyco-engineered mAb products (i.e., obinutuzumab, benralizumab and atezolizumab). Finally, the glycosylation pattern of infliximab (Remicade®) was assessed and compared to two of its commercially available biosimilars (Remsima® and Inflectra®). The middle-up analysis proved to provide accurate quantitation results and has the added potential to be used as multi-attribute monitoring method.

4.
J Chromatogr A ; 1655: 462499, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487883

RESUMO

This work describes the direct hyphenation of cation exchange chromatography (CEX) with a compact, easy-to-use benchtop Time of Flight mass spectrometer (ToF/MS) for the analytical characterization of monoclonal antibodies (mAbs). For this purpose, a wide range of commercial mAb products (including expired samples and mAb biosimilars) were selected to draw reliable conclusions. From a chromatographic point of view, various buffers and column dimensions were tested. When considering pH response, buffer stability over time and MS compatibility, the best compromise is represented by the following recipe: 50 mM ammonium acetate, titrated to pH 5.0 (mobile phase A) and 160 mM ammonium acetate, titrated to pH 8.5 (mobile phase B). Despite the broader peaks observed with the 2.1 mm i.d. CEX column, this was preferentially selected for CEX-MS operation, since the efficiency loss (caused by extra-column dispersion) was still acceptable while MS compatibility was strongly enhanced (thanks to low flow rate). In terms of MS, it was important to avoid the use of glass-bottled mobile phases, laboratory glassware and glass vials to minimize loss of MS resolution, sensitivity, and mass accuracy due to metal contaminants. With this new CEX-MS setup, straightforward and rapid analysis (in less than 10 min) of charge variants was possible, allowing the separation and identification of several charge variants.


Assuntos
Anticorpos Monoclonais , Medicamentos Biossimilares , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Espectrometria de Massas
5.
Front Chem ; 9: 664489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458231

RESUMO

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.

6.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073805

RESUMO

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.

7.
Anal Chim Acta ; 1156: 338347, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781463

RESUMO

When analyzing large complex protein biopharmaceuticals, ion-pairing agents imparting low pH are widely used as mobile phase additives to improve the chromatographic performance. However, one of the most effective additives in RPLC and HILIC, trifluoroacetic acid (TFA), is known as a strong suppressor of the MS signal and limits its use in hyphenated techniques. In this study, we evaluated a wide range of acidic additives to find alternatives to TFA that provided comparable chromatographic performance and improved MS sensitivity. It was observed that stronger acidic additives were required for intact level analysis compared to subunit level analysis and that the additive nature had a larger impact on the chromatographic performance in HILIC mode compared to RPLC. Therefore, four additives were identified as valuable alternatives to TFA in RPLC mode, namely, difluoroacetic acid (DFA), dichloroacetic acid (DClAA), trichloroacetic acid (TClAA), and methanesulfonic acid (MSA). Only one of these additives provided acceptable performance in HILIC mode, namely, TClAA. After evaluation of the MS performance, TClAA was discarded due to the apparent loss of intensity in both RPLC-MS and HILIC-MS mode. Together, these results demonstrate that for HILIC-MS analysis TFA remains the gold standard additive. However, DFA was found as promising alternative to TFA for RPLC-MS analysis and could play an important role in the development of methods for the characterization of the increasingly complex protein biopharmaceuticals.


Assuntos
Produtos Biológicos , Cromatografia Líquida , Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Proteínas , Ácido Trifluoracético
8.
J Sep Sci ; 44(1): 35-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32914936

RESUMO

Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.


Assuntos
Fragmentos Fc das Imunoglobulinas/análise , Proteínas Recombinantes de Fusão/análise , Animais , Humanos
9.
Anal Chem ; 92(12): 8170-8177, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407621

RESUMO

Conventional antibody-drug conjugate (ADC) manufacturing methods are based on the nonselective bioconjugation of cytotoxic drugs to lysine and cysteine residues. This results in highly heterogeneous mixtures of different drug-antibody ratios (DAR) that can significantly affect the safety and efficacy of the ADC product. Recently, an innovative procedure named GlyCLICK was suggested, consisting of a two-step enzymatic procedure to transform Fc-glycans present on IgG mAbs into two site-specific anchor points for the conjugation of any alkyne-containing payload of choice. Here, we evaluated the conjugation process by comparing trastuzumab and trastuzumab conjugated with DM1, following the GlyCLICK procedure. Complementary reversed phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS) were used to analyze the protein subunits (ca. 25-100 kDa) obtained after different levels of enzymatic digestion and chemical reduction. Our results demonstrated that the hydrophobic character of the drug molecule allows to rapidly confirm the Fc-drug conjugation at the chromatographic level. Furthermore, the hyphenation to MS detection provided accurate mass information on the ADC subunits and facilitated the DAR determination of 2.0. Therefore, this work illustrates how middle-up analysis using LC/HRMS can provide accurate and complementary information on the critical quality attributes of these novel site-specific ADC products.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/análise , Polissacarídeos/química , Cromatografia Líquida , Espectrometria de Massas , Conformação Molecular
10.
Anal Chim Acta ; 1089: 1-18, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31627805

RESUMO

Over the past few years, loss of patent protection for blockbuster monoclonal antibody (mAb) drugs has caused a significant shift in the pharmaceutical industry towards the development of biosimilar products. As a result, multiple biosimilar mAbs are becoming available for a single originator drug. As opposed to small-molecular drugs, protein biopharmaceuticals do not have fully defined and reproducible structures, making it impossible to create identical copies. Therefore, regulators demand biosimilar sponsors to demonstrate similarity with the reference product to prevent safety and efficacy issues with the proposed product. Protein glycosylation is considered a crucially important quality attribute, because of its major role in immunogenicity and clinical efficacy of therapeutic proteins. However, the intrinsic biological variability of glycan structures creates a significant challenge for the current analytical platforms. In this review, we discuss the importance of glycan characterization on therapeutic proteins, with a particular focus on the analytical techniques applied for glycan profiling of biosimilar mAb products. In addition, we present a case study on infliximab biosimilars to illustrate the potential clinical implications of differences in glycan profile between originator and biosimilar mAb products.


Assuntos
Anticorpos Monoclonais/análise , Medicamentos Biossimilares/análise , Glicoproteínas/análise , Polissacarídeos/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Medicamentos Biossimilares/química , Medicamentos Biossimilares/metabolismo , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Humanos , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Infliximab/análise , Infliximab/química , Infliximab/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
11.
Anal Bioanal Chem ; 411(19): 4615-4627, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30617394

RESUMO

In the present analytical workflow, chromatographic methods have been developed and hyphenated to mass spectrometry (MS) for the characterization of protein size, charge, hydrophobic, and hydrophilic variants of daratumumab. Multiple critical quality attributes (CQAs) were characterized in forced degraded daratumumab sample, using size exclusion, ion exchange (IEX), and hydrophobic interaction (HIC) chromatography coupled to fluorescence detection for relative quantification and fractionation. Mass assignment was performed by using a fast, non-denaturing and universal size exclusion chromatography (SEC) method prior to native MS analysis of the collected fractions (off-line approach). This allowed the identification of N-terminal lysine clipping, and the extent of glycation and oxidation at intact protein level. Finally, middle-up analysis of daratumumab was performed using reversed phase (RPLC) and hydrophilic interaction (HILIC) chromatography coupled to MS to obtain a comprehensive overview of all PTMs after the forced stressed conditions and a fine characterization of the glycosylation profile. Conveniently, the presented workflow maintains the established golden standard non-denaturing chromatography techniques and additionally introduces a straightforward and automated desalting procedure prior to MS analysis. Therefore, it is expected that the off-line coupling of SEC, IEX, and HIC to SEC-MS has great potential to be implemented in routine characterization of mAbs. Graphical abstract ᅟ.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Fluxo de Trabalho , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cromatografia Líquida/métodos , Glicosilação , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...